

Welcome to ACOpy’s documentation!

This project implements the Ant Colony Optimization Meta-Heuristic [http://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms]. Solutions are
found through an iterative process. In each iteration, several ants find a solution
that visits every city by considering not just the distance involved but also the
amount of pheromone along each edge. At the end of each iteration, the ants deposit
pheromone along the edges of the solution they found in inverse proportion to the
total distance. In this way, the ants remember which edges are useful and which are
not.

Contents:

	ACOpy
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage
	Quickstart

	Solver Plugins

	CLI Tool

	API Documentation
	acopy package

	acopy.utils package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.7.0 (2020-04-18)

	0.6.4 (2019-05-17)

	0.6.3 (2019-05-17)

	0.6.2 (2019-02-02)

	0.6.1 (2018-10-07)

	0.6.0 (2018-08-18)

	0.5.2 (2014-09-09)

Indices and tables

	Index

	Module Index

	Search Page

ACOpy

[image: _images/acopy.svg]
 [https://pypi.python.org/pypi/acopy][image: _images/acopy1.svg]
 [https://travis-ci.org/rhgrant10/acopy][image: Documentation Status]
 [https://acopy.readthedocs.io/en/latest/?badge=latest]Ant Colony Optimization [http://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms] for the Traveling Salesman Problem.

	Free software: Apache Software License 2.0

	Documentation: https://acopy.readthedocs.io.

Features

	Uses NetworkX [https://networkx.github.io/] for graph representation

	Solver can be customized via plugins

	Has a utility for plotting information about the solving process

	CLI tool that supports reading graphs in a variety of formats (including tsplib95 [https://tsplib95.readthedocs.io/])

	Support for plotting iteration data using matplotlib and pandas

ACOpy was formerly called “Pants.”

For now, only Python 3.6+ is supported. If there is demand I will add support for 3.4+.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install ACOpy, run this command in your terminal:

$ pip install acopy

There are some optional extras available that enable the ability to plot iteration data.

$ pip install acopy[plot]

This is the preferred method to install ACOpy, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for ACOpy can be downloaded from the Github repo [https://github.com/rhgrant10/acopy].

You can either clone the public repository:

$ git clone git://github.com/rhgrant10/acopy

Or download the tarball [https://github.com/rhgrant10/acopy/tarball/master]:

$ curl -OL https://github.com/rhgrant10/acopy/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Quickstart

To use ACOpy in a project, you simply use it to create a Solver and a Colony:

>>> import acopy
>>> solver = acopy.Solver(rho=.03, q=1)
>>> colony = acopy.Colony(alpha=1, beta=3)

We can use the solver and the colony to solve any weighted networkx graph. Let’s use tsplib95.utils.load_problem() to read a TSPLIB file into a networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]:

>>> import tsplib95
>>> problem = tsplib95.load_problem('bayg29.tsp')
>>> G = problem.get_graph()

Solving is easy. Let’s do 100 iterations with a default number of ants:

>>> tour = solver.solve(G, colony, limit=100)

How good was the best tour found? Let’s look:

>>> tour.cost
1719

You can list the solution tour in terms of the nodes or edges:

>>> tour.nodes
[19,
 25,
 7,
...
>>> tour.path
[(19, 25),
(25, 7),
(7, 23),
...

Solver Plugins

Adding plugins to a solver can either change how the solver works or add additional functionality. Adding a plugin is easy. Let’s add a plugin that times the solver:

>>> timer = acopy.plugins.TimerPlugin()
>>> solver.add_plugin(timer)

Now after we solve we can get the duration and average time per iteration:

>>> best = solver.solve(G, colony, limit=100)
>>> timer.duration
4.946878910064697
>>> timer.time_per_iter
0.049468789100646976

Writing New Plugins

Writing a new plugin is realtively easy. Simply subclass acopy.solvers.SolverPlugin and provide one of the following hooks:

	on_start

	called before the first iteration

	on_iteration

	called upon completion of each iteration

	on_finish

	called after the last iteration

Each hook takes as its only argument an instance of acopy.solvers.State that contains information about the state of the solver.

For example, let’s write a plugin that increases the number of ants each iteration.

class IncreasingAnts(acopy.solvers.SolverPlugin):

 def __init__(self, delta=1):
 super().__init__(delta=delta)
 self.delta = delta

 def on_iteration(self, state):
 ant = state.colony.get_ants(self.delta)
 state.ants.append(ant)

Note that you must pass the parameters you want to appear in the repr() to super() as keyword arguments:

>>> IncreasingAnts(2)
<IncreasingAnts(delta=2)>

Built-in Plugins

There are several plugins built into acopy. Below is a description of what they do.

Printout

Print information about the solver as it works.

EliteTracer

Let the best ant from each iteration deposit more pheromone.

You can control how much pheromone is deposited by specifying the factor. For example, to deposit an additional two times the amount of pheromone set the factor to 2:

>>> elite = acopy.plugins.EliteTracer(factor=2)

You can also think of this as how many additional times the best ant from each iteration deposits her pheromone.

Timer

Time the total duration of the solver as well as the average time per iteration.

Darwin

Apply variation to the alpha and beta values on each iteration.

You can control the sigma value for the guassian distribution used to choose the next values:

>>> darwin = acopy.plugins.Darwin(sigma=.25)

StatsRecorder

Record data about the solutions and pheromone levels on each iteration.

Specifically the plugin records the amount of pheromone on every edge as well as the min, max, and average pheromone levels. It records the best, worst, average, and global best solution found for each iteration. Lastly, it tracks the number of unique soltions found for the each iteration, for all iterations, and how many unique solutions were new.

Periodic action plugins

Perform some action periodically.

Set the number of iterations that constitute a period using the period paramter:

>>> periodic = acopy.plugins.PeriodicActionPlugin(period=100)

By itself, the periodic action plugin does nothing but instead is designed to be subclassed. Just provide a defintion for the action method:

>>> import time

>>> # plugin that periodically prints the current time
>>> class PrintTime(acopy.plugins.PeriodicActionPlugin):
... def action(self, state):
... print(time.time())
...

There are two built-in subclasses: PeriodicReset and PheromoneFlip.

PeriodicReset

Periodically reset the pheromone levels.

PheromoneFlip

Periodically invert the pheromone levels so that the best edges become the worst, and vice versa.

Early termination plugins

Terminate the solver prematurely.

Like the PeriodicActionPlugin this plugin does nothing by itself. You must subclass it and provide a defintion for should_terminate:

>>> import time

>>> # plugin that stops the solver if the time is a pallendrome
>>> class PallendromicTerminator(acopy.plugins.EarlyTerminationPlugin):
... def should_terminate(self, state):
... seconds = str(int(time.time()))
... return list(seconds) == list(reversed(seconds))
...

There are two such plugins: Threshold and TimeLimit.

Threshold

Set a minimum threshold cost for the solver. If a solution is found that meets or dips below the threshold then the solver terminates early.

>>> threshold = acopy.plugins.Threshold(threshold=1719)

TimeLimit

Set a time limit for the solver.

The maximum number of seconds is of course configurable. The plugin will stop the solver from iterating again if the number of seconds exceeds the value set:

>>> time_limit = acopy.plugins.TimeLimit(seconds=30)

Note this means that it is possible to exceed the time limit since it will not stop the solver mid-iteration.

CLI Tool

The CLI tool included provides a quick way to solve graphs saved as files in a variety of formats.

$ acopy solve --file ~/Downloads/ALL_tsp/burma14.tsp --file-format tsplib95 --limit 50
SEED=172438059386129273
Solver(rho=0.03, q=1.0, top=None)
Registering plugin: <Printout()>
Registering plugin: <Timer()>
Registering plugin: <Darwin(sigma=3.0)>
Using 33 ants from Colony(alpha=1.0, beta=3.0)
Performing 50 iterations:
Iteration Cost Solution
 0 42 1 14 13 12 11 9 10 8 7 6 5 4 3 2
 2 38 1 13 11 9 10 2 8 7 6 5 4 3 12 14
 3 34 1 11 9 10 2 8 7 6 5 4 3 14 12 13
 4 33 1 11 9 10 2 8 13 7 6 5 4 12 3 14
 28 32 1 11 9 10 14 3 4 12 6 5 7 13 8 2
 29 31 1 11 9 10 2 8 13 7 5 6 12 4 3 14
Done
Total time: 0.2856738567352295 seconds
Avg iteration time: 0.00571347713470459 seconds

API Documentation

acopy package

acopy.ant module

	
class acopy.ant.Ant(alpha=1, beta=3)

	Bases: object

An ant.

Ants explore a graph, using alpha and beta to guide their decision making
process when choosing which edge to travel next.

	Parameters

	
	alpha (float) – how much pheromone matters

	beta (float) – how much distance matters

	
alpha

	How much pheromone matters. Always kept greater than zero.

	
beta

	How much distance matters. Always kept greater than zero.

	
choose_destination(graph, current, unvisited)

	Return the next node.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – the graph being solved

	current – starting node

	unvisited (list) – available nodes

	Returns

	chosen edge

	
choose_node(choices, scores)

	Return one of the choices.

Note that scores[i] corresponds to choices[i].

	Parameters

	
	choices (list) – the unvisited nodes

	scores (list) – the scores for the given choices

	Returns

	one of the choices

	
get_scores(graph, current, destinations)

	Return scores for the given destinations.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – the graph being solved

	current – the node from which to score the destinations

	destinations (list) – available, unvisited nodes

	Returns

	scores

	Return type

	list

	
get_starting_node(graph)

	Return a starting node for an ant.

	Parameters

	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – the graph being solved

	Returns

	node

	
get_unvisited_nodes(graph, solution)

	Return the unvisited nodes.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – the graph being solved

	solution (Solution) – in progress solution

	Returns

	unvisited nodes

	Return type

	list

	
initialize_solution(graph)

	Return a newly initialized solution for the given graph.

	Parameters

	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – the graph to solve

	Returns

	intialized solution

	Return type

	Solution

	
score_edge(edge)

	Return the score for the given edge.

	Parameters

	edge (dict) – the edge data

	Returns

	score

	Return type

	float

	
tour(graph)

	Find a solution to the given graph.

	Parameters

	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – the graph to solve

	Returns

	one solution

	Return type

	Solution

	
class acopy.ant.Colony(alpha=1, beta=3)

	Bases: object

Colony of ants.

Effectively this is a source of Ant for a
Solver.

	Parameters

	
	alpha (float) – relative factor for edge pheromone

	beta (float) – relative factor for edge weight

	
get_ants(count)

	Return the requested number of Ant s.

	Parameters

	count (int) – number of ants to return

	Return type

	list

acopy.solvers module

	
class acopy.solvers.Solution(graph, start, ant=None)

	Bases: object

Tour for a graph.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – a graph

	start – starting node

	ant (Ant) – ant responsible

	
add_node(node)

	Record a node as visited.

	Parameters

	node – the node visited

	
close()

	Close the tour so that the first and last nodes are the same.

	
get_easy_id(sep=' ', monospace=True)

	

	
get_id()

	Return the ID of the solution.

The default implementation is just each of the nodes in visited order.

	Returns

	solution ID

	Return type

	tuple

	
trace(q, rho=0)

	Deposit pheromone on the edges.

Note that by default no pheromone evaporates.

	Parameters

	
	q (float) – the amount of pheromone

	rho (float) – the percentage of pheromone to evaporate

	
class acopy.solvers.Solver(rho=0.03, q=1, top=None, plugins=None)

	Bases: object

ACO solver.

Solvers control the parameters related to pheromone deposit and evaporation.
If top is not specified, it defaults to the number of ants used to solve a
graph.

	Parameters

	
	rho (float) – percentage of pheromone that evaporates each iteration

	q (float) – amount of pheromone each ant can deposit

	top (int) – number of ants that deposit pheromone

	plugins (list) – zero or more solver plugins

	
add_plugin(plugin)

	Add a single solver plugin.

If plugins have the same name, only the last one added is kept.

	Parameters

	plugin (acopy.plugins.SolverPlugin) – the plugin to add

	
add_plugins(*plugins)

	Add one or more solver plugins.

	
find_solutions(graph, ants)

	Return the solutions found for the given ants.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – a graph

	ants (list) – the ants to use

	Returns

	one solution per ant

	Return type

	list

	
get_plugins()

	Return the added plugins.

	Returns

	plugins previously added

	Return type

	list

	
global_update(state)

	Perform a global pheromone update.

	Parameters

	state (State) – solver state

	
optimize(graph, colony, gen_size=None, limit=None)

	Find and return increasingly better solutions.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – graph to solve

	colony (Colony) – colony from which to source each Ant

	gen_size (int) – number of Ant s to use
(default is one per graph node)

	limit (int) – maximum number of iterations to perform (default is
unlimited so it will run forever)

	Returns

	better solutions as they are found

	Return type

	iter

	
solve(*args, **kwargs)

	Find and return the best solution.

Accepts exactly the same parameters as the optimize() method.

	Returns

	best solution found

	Return type

	Solution

	
class acopy.solvers.SolverPlugin(**kwargs)

	Bases: object

Solver plugin.

Solver plugins can be added to any solver to customize its behavior.
Plugins are initialized once when added, once before the first solver
iteration, once after each solver iteration has completed, and once after
all iterations have completed.

Implementing each hook is optional.

	
initialize(solver)

	Perform actions when being added to a solver.

Though technically not required, this method should be probably be
idempotent since the same plugin could be added to the same solver
multiple times (perhaps even by mistake).

	Parameters

	solver (acopy.solvers.Solver) – the solver to which the plugin is being added

	
name = 'plugin'

	unique name

	
on_finish(state)

	Perform actions once all iterations have completed.

	Parameters

	state (acopy.solvers.State) – solver state

	
on_iteration(state)

	Perform actions after each iteration.

	Parameters

	state (acopy.solvers.State) – solver state

	
on_start(state)

	Perform actions before the first iteration.

	Parameters

	state (acopy.solvers.State) – solver state

	
class acopy.solvers.State(graph, ants, limit, gen_size, colony)

	Bases: object

Solver state.

This class tracks the state of a solution in progress and is passed to each
plugin hook. Specially it contains:

	Attribute

	Description

	graph

	graph being solved

	colony

	colony that generated the ants

	ants

	ants being used to solve the graph

	limit

	maximum number of iterations

	gen_size

	number of ants being used

	solutions

	solutions found this iteration

	best

	best solution found this iteration

	is_new_record

	whether the best is a new record

	record

	best solution found so far

	previous_record

	previously best solution

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – a graph

	ants (list) – the ants being used

	limit (int) – maximum number of iterations

	gen_size (int) – number of ants to use

	colony (Colony) – source colony for the ants

	
best

	

acopy.utils package

acopy.utils.data module

	
acopy.utils.data.get_demo_graph()

	

	
acopy.utils.data.get_formats()

	

	
acopy.utils.data.read_graph_data(path, format_)

	

	
acopy.utils.data.read_json(path)

	

	
acopy.utils.data.read_tsplib95(path)

	

acopy.utils.general module

	
acopy.utils.general.is_plot_enabled()

	Return true if plotting is enabled.

Plotting requires matplotlib and pandas to be installed.

	Returns

	indication of whether plotting is enabled

	Return type

	bool

	
acopy.utils.general.looper(limit)

	Return an optionally endless list of indexes.

	
acopy.utils.general.positive(value)

	

acopy.utils.plot module

The plot utility works with the StatsRecorder plugin to generate interesting plots of solver iterations.

[image: _images/pheromone-levels.png]
[image: _images/pheromone-stats.png]
[image: _images/uniqueness.png]
[image: _images/solutions.png]

	
class acopy.utils.plot.Plotter(stats)

	Bases: object

Utility for plotting iteration data using matplotlib.

This is meant to be used in combination with the StatsRecorder
plugin which collects stats about solutions and pheromone levels on each
iteration.

	Parameters

	stats (dict) – map of stats by name

	
extract_ant_distances()

	

	
plot()

	Create and show the plot.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/rhgrant10/acopy/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

ACOpy could always use more documentation, whether as part of the
official ACOpy docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/rhgrant10/acopy/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up acopy for local development.

	Fork the acopy repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/acopy.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv acopy
$ cd acopy/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 acopy tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/rhgrant10/acopy/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_acopy

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Robert Grant <rhgrant10@gmail.com>

Contributors

None yet. Why not be the first?

History

0.7.0 (2020-04-18)

	Bump all dependencies to latest

	Fix minor display issue in the CLI

	Add py37 to the tox config

0.6.4 (2019-05-17)

	Fix the missing acopy.utils package problem

0.6.3 (2019-05-17)

	Freshen up the dev dependencies

	Add the Python 3.7 classifier

	Actually fix import issue

0.6.2 (2019-02-02)

	Fix import issue

0.6.1 (2018-10-07)

	Bump dependency on tsplib95 to 0.3.2

0.6.0 (2018-08-18)

	First release on PyPI as acopy

	Complete rewrite

	Support for networkx

	Support for tsplib95

	Customizable solver

	Plotting capabilities

	Now uses Apache 2.0 License (formerly GPLv3)

	Supports only python 3.6+

0.5.2 (2014-09-09)

	Last release on the PyPI as ACO-Pants

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 acopy	

 	
 	
 acopy.ant	

 	
 	
 acopy.solvers	

 	
 	
 acopy.utils	

 	
 	
 acopy.utils.data	

 	
 	
 acopy.utils.general	

 	
 	
 acopy.utils.plot	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | T

A

 	
 	acopy (module)

 	acopy.ant (module)

 	acopy.solvers (module)

 	acopy.utils (module)

 	acopy.utils.data (module)

 	acopy.utils.general (module)

 	
 	acopy.utils.plot (module)

 	add_node() (acopy.solvers.Solution method)

 	add_plugin() (acopy.solvers.Solver method)

 	add_plugins() (acopy.solvers.Solver method)

 	alpha (acopy.ant.Ant attribute)

 	Ant (class in acopy.ant)

B

 	
 	best (acopy.solvers.State attribute)

 	
 	beta (acopy.ant.Ant attribute)

C

 	
 	choose_destination() (acopy.ant.Ant method)

 	choose_node() (acopy.ant.Ant method)

 	
 	close() (acopy.solvers.Solution method)

 	Colony (class in acopy.ant)

E

 	
 	extract_ant_distances() (acopy.utils.plot.Plotter method)

F

 	
 	find_solutions() (acopy.solvers.Solver method)

G

 	
 	get_ants() (acopy.ant.Colony method)

 	get_demo_graph() (in module acopy.utils.data)

 	get_easy_id() (acopy.solvers.Solution method)

 	get_formats() (in module acopy.utils.data)

 	get_id() (acopy.solvers.Solution method)

 	
 	get_plugins() (acopy.solvers.Solver method)

 	get_scores() (acopy.ant.Ant method)

 	get_starting_node() (acopy.ant.Ant method)

 	get_unvisited_nodes() (acopy.ant.Ant method)

 	global_update() (acopy.solvers.Solver method)

I

 	
 	initialize() (acopy.solvers.SolverPlugin method)

 	
 	initialize_solution() (acopy.ant.Ant method)

 	is_plot_enabled() (in module acopy.utils.general)

L

 	
 	looper() (in module acopy.utils.general)

N

 	
 	name (acopy.solvers.SolverPlugin attribute)

O

 	
 	on_finish() (acopy.solvers.SolverPlugin method)

 	on_iteration() (acopy.solvers.SolverPlugin method)

 	
 	on_start() (acopy.solvers.SolverPlugin method)

 	optimize() (acopy.solvers.Solver method)

P

 	
 	plot() (acopy.utils.plot.Plotter method)

 	
 	Plotter (class in acopy.utils.plot)

 	positive() (in module acopy.utils.general)

R

 	
 	read_graph_data() (in module acopy.utils.data)

 	
 	read_json() (in module acopy.utils.data)

 	read_tsplib95() (in module acopy.utils.data)

S

 	
 	score_edge() (acopy.ant.Ant method)

 	Solution (class in acopy.solvers)

 	solve() (acopy.solvers.Solver method)

 	
 	Solver (class in acopy.solvers)

 	SolverPlugin (class in acopy.solvers)

 	State (class in acopy.solvers)

T

 	
 	tour() (acopy.ant.Ant method)

 	
 	trace() (acopy.solvers.Solution method)

 _static/up.png

_images/pheromone-levels.png
Edge Pheromone (levels)

2000 ~

1500 A

1000 A

500 4

_images/uniqueness.png
Solutions (uniqueness)

300007 __ iteration

— hew
25000 { — fotal

20000 A

15000 A

10000 A

5000 ~

0 100 200 300 400 500

_static/ajax-loader.gif

_images/pheromone-stats.png
Edge Pheromone (stats)

2000 ~

1500 A

1000 A

500 4

200

300

400

500

_images/solutions.png
Solutions (stats)

— avg
2.0 —— best
—— global_best

1.8 4 —— worst
1.69 §
1.4 1 \
1.2 1
1.0 1
0.8 1
0.6 1

100 200 300 400 500

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to ACOpy’s documentation!

 		
 ACOpy

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Quickstart

 		
 Solver Plugins

 		
 Writing New Plugins

 		
 Built-in Plugins

 		
 CLI Tool

 		
 API Documentation

 		
 acopy package

 		
 acopy.ant module

 		
 acopy.solvers module

 		
 acopy.utils package

 		
 acopy.utils.data module

 		
 acopy.utils.general module

 		
 acopy.utils.plot module

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.7.0 (2020-04-18)

 		
 0.6.4 (2019-05-17)

 		
 0.6.3 (2019-05-17)

 		
 0.6.2 (2019-02-02)

 		
 0.6.1 (2018-10-07)

 		
 0.6.0 (2018-08-18)

 		
 0.5.2 (2014-09-09)

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

